一天一个Linux命令,rsync命令

rsync命令

rsync命令是一个远程数据同步工具,可通过LAN/WAN快速同步多台主机间的文件。rsync使用所谓的“rsync算法”来使本地和远程两个主机之间的文件达到同步,这个算法只传送两个文件的不同部分,而不是每次都整份传送,因此速度相当快。 rsync是一个功能非常强大的工具,其命令也有很多功能特色选项。

语法

1
2
3
4
5
6
rsync [OPTION]... SRC DEST
rsync [OPTION]... SRC [USER@]host:DEST
rsync [OPTION]... [USER@]HOST:SRC DEST
rsync [OPTION]... [USER@]HOST::SRC DEST
rsync [OPTION]... SRC [USER@]HOST::DEST
rsync [OPTION]... rsync://[USER@]HOST[:PORT]/SRC [DEST]

对应于以上六种命令格式,rsync有六种不同的工作模式:

  1. 拷贝本地文件。当SRC和DES路径信息都不包含有单个冒号”:”分隔符时就启动这种工作模式。如:rsync -a /data /backup
  2. 使用一个远程shell程序(如rshssh)来实现将本地机器的内容拷贝到远程机器。当DST路径地址包含单个冒号”:”分隔符时启动该模式。如:rsync -avz *.c foo:src
  3. 使用一个远程shell程序(如rsh、ssh)来实现将远程机器的内容拷贝到本地机器。当SRC地址路径包含单个冒号”:”分隔符时启动该模式。如:rsync -avz foo:src/bar /data
  4. 从远程rsync服务器中拷贝文件到本地机。当SRC路径信息包含”::”分隔符时启动该模式。如:rsync -av root@192.168.78.192::www /databack
  5. 从本地机器拷贝文件到远程rsync服务器中。当DST路径信息包含”::”分隔符时启动该模式。如:rsync -av /databack root@192.168.78.192::www
  6. 列远程机的文件列表。这类似于rsync传输,不过只要在命令中省略掉本地机信息即可。如:rsync -v rsync://192.168.78.192/www

选项

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
-v, --verbose 详细模式输出。
-q, --quiet 精简输出模式。
-c, --checksum 打开校验开关,强制对文件传输进行校验。
-a, --archive 归档模式,表示以递归方式传输文件,并保持所有文件属性,等于-rlptgoD。
-r, --recursive 对子目录以递归模式处理。
-R, --relative 使用相对路径信息。
-b, --backup 创建备份,也就是对于目的已经存在有同样的文件名时,将老的文件重新命名为~filename。可以使用--suffix选项来指定不同的备份文件前缀。
--backup-dir 将备份文件(如~filename)存放在在目录下。
-suffix=SUFFIX 定义备份文件前缀。
-u, --update 仅仅进行更新,也就是跳过所有已经存在于DST,并且文件时间晚于要备份的文件,不覆盖更新的文件。
-l, --links 保留软链结。
-L, --copy-links 想对待常规文件一样处理软链结。
--copy-unsafe-links 仅仅拷贝指向SRC路径目录树以外的链结。
--safe-links 忽略指向SRC路径目录树以外的链结。
-H, --hard-links 保留硬链结。
-p, --perms 保持文件权限。
-o, --owner 保持文件属主信息。
-g, --group 保持文件属组信息。
-D, --devices 保持设备文件信息。
-t, --times 保持文件时间信息。
-S, --sparse 对稀疏文件进行特殊处理以节省DST的空间。
-n, --dry-run现实哪些文件将被传输。
-w, --whole-file 拷贝文件,不进行增量检测。
-x, --one-file-system 不要跨越文件系统边界。
-B, --block-size=SIZE 检验算法使用的块尺寸,默认是700字节。
-e, --rsh=command 指定使用rsh、ssh方式进行数据同步。
--rsync-path=PATH 指定远程服务器上的rsync命令所在路径信息。
-C, --cvs-exclude 使用和CVS一样的方法自动忽略文件,用来排除那些不希望传输的文件。
--existing 仅仅更新那些已经存在于DST的文件,而不备份那些新创建的文件。
--delete 删除那些DST中SRC没有的文件。
--delete-excluded 同样删除接收端那些被该选项指定排除的文件。
--delete-after 传输结束以后再删除。
--ignore-errors 及时出现IO错误也进行删除。
--max-delete=NUM 最多删除NUM个文件。
--partial 保留那些因故没有完全传输的文件,以是加快随后的再次传输。
--force 强制删除目录,即使不为空。
--numeric-ids 不将数字的用户和组id匹配为用户名和组名。
--timeout=time ip超时时间,单位为秒。
-I, --ignore-times 不跳过那些有同样的时间和长度的文件。
--size-only 当决定是否要备份文件时,仅仅察看文件大小而不考虑文件时间。
--modify-window=NUM 决定文件是否时间相同时使用的时间戳窗口,默认为0。
-T --temp-dir=DIR 在DIR中创建临时文件。
--compare-dest=DIR 同样比较DIR中的文件来决定是否需要备份。
-P 等同于 --partial。
--progress 显示备份过程。
-z, --compress 对备份的文件在传输时进行压缩处理。
--exclude=PATTERN 指定排除不需要传输的文件模式。
--include=PATTERN 指定不排除而需要传输的文件模式。
--exclude-from=FILE 排除FILE中指定模式的文件。
--include-from=FILE 不排除FILE指定模式匹配的文件。
--version 打印版本信息。
--address 绑定到特定的地址。
--config=FILE 指定其他的配置文件,不使用默认的rsyncd.conf文件。
--port=PORT 指定其他的rsync服务端口。
--blocking-io 对远程shell使用阻塞IO。
-stats 给出某些文件的传输状态。
--progress 在传输时现实传输过程。
--log-format=formAT 指定日志文件格式。
--password-file=FILE 从FILE中得到密码。
--bwlimit=KBPS 限制I/O带宽,KBytes per second。
-h, --help 显示帮助信息。

参数

实例

rsync /etc/fstab /tmp 此命令实现了在本地两个文件夹内容的同步。

1563901405754

rsync -r /etc/ 127.0.0.1:/tmp/ 此命令以递归的方式把当前主机/etc目录下的所有文件拷贝到远程主机的/tmp/目录下, 我这里使用127.0.0.1模拟了远程主机的调用, 图一是调用过程, 图二是调用结果:

1563901912096

1563902090185

还可以通过配置 /etc/rsyncd.conf 文件的形式来进行远程传送

一天一个Linux命令,su命令

su命令

su命令用于切换当前用户身份到其他用户身份,变更时须输入所要变更的用户帐号与密码。

语法

su(选项)(参数)

选项

1
2
3
4
5
6
7
-c<指令>或--command=<指令>:执行完指定的指令后,即恢复原来的身份;
-f或——fast:适用于csh与tsch,使shell不用去读取启动文件;
-l或——login:改变身份时,也同时变更工作目录,以及HOME,SHELL,USER,logname。此外,也会变更PATH变量;
-m,-p或--preserve-environment:变更身份时,不要变更环境变量;
-s<shell>或--shell=<shell>:指定要执行的shell;
--help:显示帮助;
--version;显示版本信息。

参数

用户:指定要切换身份的目标用户。

实例

变更帐号为root并在执行ls指令后退出变回原使用者:

1563811907725

简单的切换用户:

1563812153334

一天一个Linux命令,tee命令

alias命令

Linux tee命令用于读取标准输入的数据,并将其内容输出成文件。

tee指令会从标准输入设备读取数据,将其内容输出到标准输出设备,同时保存成文件。

语法

tee [-ai][--help][--version][文件...]

选项

1
2
3
4
-a或--append  附加到既有文件的后面,而非覆盖它.
-i或--ignore-interrupts  忽略中断信号。
--help  在线帮助。
--version  显示版本信息。

实例

tee zhengzhou lanzhou 同时输入到两个文件中

1563465397948

1563465592586

一天一个Linux命令,date命令

date命令

date命令是显示或设置系统时间与日期。

很多shell脚本里面需要打印不同格式的时间或日期,以及要根据时间和日期执行操作。延时通常用于脚本执行过程中提供一段等待的时间。日期可以以多种格式去打印,也可以使用命令设置固定的格式。在类UNIX系统中,日期被存储为一个整数,其大小为自世界标准时间(UTC)1970年1月1日0时0分0秒起流逝的秒数。

语法

date(选项)(参数)

选项

1
2
3
4
5
-d<字符串>:显示字符串所指的日期与时间。字符串前后必须加上双引号;
-s<字符串>:根据字符串来设置日期与时间。字符串前后必须加上双引号;
-u:显示GMT;
--help:在线帮助;
--version:显示版本信息。

参数

<+时间日期格式>:指定显示时使用的日期时间格式。

日期格式字符串列表

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
%H 小时,24小时制(00~23)
%I 小时,12小时制(01~12)
%k 小时,24小时制(0~23)
%l 小时,12小时制(1~12)
%M 分钟(00~59)
%p 显示出AM或PM
%r 显示时间,12小时制(hh:mm:ss %p)
%s 从1970年1月1日00:00:00到目前经历的秒数
%S 显示秒(00~59)
%T 显示时间,24小时制(hh:mm:ss)
%X 显示时间的格式(%H:%M:%S)
%Z 显示时区,日期域(CST)
%a 星期的简称(Sun~Sat)
%A 星期的全称(Sunday~Saturday)
%h,%b 月的简称(Jan~Dec)
%B 月的全称(January~December)
%c 日期和时间(Tue Nov 20 14:12:58 2012)
%d 一个月的第几天(01~31)
%x,%D 日期(mm/dd/yy)
%j 一年的第几天(001~366)
%m 月份(01~12)
%w 一个星期的第几天(0代表星期天)
%W 一年的第几个星期(00~53,星期一为第一天)
%y 年的最后两个数字(1999则是99)

实例

格式化输出当前日期:

1563378519108

格式化输出昨天日期:

1563378627170

​ 1000000000000秒, 输入秒数可以计算当前这个秒数所在的具体日期时间点:

1563378812436

转换格式:

1563378960742

一天一个Linux命令,look命令

look命令

look命令用于显示文件中以指定字符串开头的任意行。

语法

look(选项)(参数)

选项

1
2
3
4
-a:使用另一个字典文件web2,该文件也位于/usr/dict目录下;
-d:只对比英文字母和数字,其余一概忽略不予比对;
-f:忽略字符大小写差别;
-t<字尾字符串>:设置字尾字符串。

参数

命令别名设置:定义命令别名,格式为“命令别名=‘实际命令’”。

实例

输入look可以查看此命令的具体信息

1563291147268

在当前/var 目录下查看所有L开头的文件

1563291463265

一天一个Linux命令,hostname命令

hostname命令

hostname命令用于显示和设置系统的主机名称。环境变量HOSTNAME也保存了当前的主机名。在使用hostname命令设置主机名后,系统并不会永久保存新的主机名,重新启动机器之后还是原来的主机名。如果需要永久修改主机名,需要同时修改/etc/hosts/etc/sysconfig/network的相关内容。

语法

hostname(选项)(参数)

选项

1
2
3
4
5
6
7
-v:详细信息模式;
-a:显示主机别名;
-d:显示DNS域名;
-f:显示FQDN名称;
-i:显示主机的ip地址;
-s:显示短主机名称,在第一个点处截断;
-y:显示NIS域名。

参数

主机名:指定要设置的主机名。

实例

显示当前的主机名:

1563197138020

设置新的主机名:

1563197286812

也可以进入/etc/目录修改 hosts文件来永久改变主机名, /etc/sysconfig/network:

1563197374802

1563197587633

一天一个Linux命令,type命令

type命令

type命令用来显示指定命令的类型,判断给出的指令是内部指令还是外部指令。

命令类型:

  • alias:别名。
  • keyword:关键字,Shell保留字。
  • function:函数,Shell函数。
  • builtin:内建命令,Shell内建命令。
  • file:文件,磁盘文件,外部命令。
  • unfound:没有找到。

语法

type(选项)(参数)

选项

1
2
3
-t:输出“file”、“alias”或者“builtin”,分别表示给定的指令为“外部指令”、“命令别名”或者“内部指令”;
-p:如果给出的指令为外部指令,则显示其绝对路径;
-a:在环境变量“PATH”指定的路径中,显示给定指令的信息,包括命令别名。

参数

指令:要显示类型的指令。

实例

如下是type命令的具体演示,可以结合上面的文字理解:

1562949377930

Redis的五种对象类型及其底层实现

Redis对象类型简介
Redis是一种key/value型数据库,其中,每个key和value都是使用对象表示的。比如,我们执行以下代码:

redis>SET message “hello redis”

其中的key是message,是一个包含了字符串”message”的对象。而value是一个包含了”hello redis”的对象。
Redis共有五种对象的类型,分别是:

类型常量 对象的名称
REDIS_STRING 字符串对象
REDIS_LIST 列表对象
REDIS_HASH 哈希对象
REDIS_SET 集合对象
REDIS_ZSET 有序集合对象

Redis中的一个对象的结构体表示如下:

/*

  • Redis 对象

  • / typedef struct redisObject {

    // 类型
    unsigned type:4;

    // 不使用(对齐位)
    unsigned notused:2;

    // 编码方式
    unsigned encoding:4;

    // LRU 时间(相对于 server.lruclock)
    unsigned lru:22;

    // 引用计数
    int refcount;

    // 指向对象的值
    void *ptr;

    } robj;

type表示了该对象的对象类型,即上面五个中的一个。但为了提高存储效率与程序执行效率,每种对象的底层数据结构实现都可能不止一种。encoding就表示了对象底层所使用的编码。下面先介绍每种底层数据结构的实现,再介绍每种对象类型都用了什么底层结构并分析他们之间的关系。

Redis对象底层数据结构
底层数据结构共有八种,如下所示:

编码常量 编码所对应的底层数据结构
REDIS_ENCODING_INT long 类型的整数
REDIS_ENCODING_EMBSTR embstr 编码的简单动态字符串
REDIS_ENCODING_RAW 简单动态字符串
REDIS_ENCODING_HT 字典
REDIS_ENCODING_LINKEDLIST 双端链表
REDIS_ENCODING_ZIPLIST 压缩列表
REDIS_ENCODING_INTSET 整数集合

REDIS_ENCODING_SKIPLIST 跳跃表和字典

字符串对象
字符串对象的编码可以是int、raw或者embstr。

如果一个字符串的内容可以转换为long,那么该字符串就会被转换成为long类型,对象的ptr就会指向该long,并且对象类型也用int类型表示。

普通的字符串有两种,embstr和raw。embstr应该是Redis 3.0新增的数据结构,在2.8中是没有的。如果字符串对象的长度小于39字节,就用embstr对象。否则用传统的raw对象。可以从下面这段代码看出:

#define REDIS_ENCODING_EMBSTR_SIZE_LIMIT 39
robj *createStringObject(char *ptr, size_t len) {
if (len <= REDIS_ENCODING_EMBSTR_SIZE_LIMIT)
return createEmbeddedStringObject(ptr,len);
else
return createRawStringObject(ptr,len);
} embstr的好处有如下几点:
embstr的创建只需分配一次内存,而raw为两次(一次为sds分配对象,另一次为objet分配对象,embstr省去了第一次)。
相对地,释放内存的次数也由两次变为一次。
embstr的objet和sds放在一起,更好地利用缓存带来的优势。
需要注意的是,redis并未提供任何修改embstr的方式,即embstr是只读的形式。对embstr的修改实际上是先转换为raw再进行修改。

raw和embstr的区别可以用下面两幅图所示:

img

img

列表对象
列表对象的编码可以是ziplist或者linkedlist。

ziplist是一种压缩链表,它的好处是更能节省内存空间,因为它所存储的内容都是在连续的内存区域当中的。当列表对象元素不大,每个元素也不大的时候,就采用ziplist存储。但当数据量过大时就ziplist就不是那么好用了。因为为了保证他存储内容在内存中的连续性,插入的复杂度是O(N),即每次插入都会重新进行realloc。如下图所示,对象结构中ptr所指向的就是一个ziplist。整个ziplist只需要malloc一次,它们在内存中是一块连续的区域。

img

linkedlist是一种双向链表。它的结构比较简单,节点中存放pre和next两个指针,还有节点相关的信息。当每增加一个node的时候,就需要重新malloc一块内存。

img

哈希对象

哈希对象的底层实现可以是ziplist或者hashtable。

ziplist中的哈希对象是按照key1,value1,key2,value2这样的顺序存放来存储的。当对象数目不多且内容不大时,这种方式效率是很高的。

hashtable的是由dict这个结构来实现的

typedef struct dict {
dictType type;
void *privdata;
dictht ht[2];
long rehashidx; /
rehashing not in progress if rehashidx == -1 / int iterators; / number of iterators currently running / } dict;
dict是一个字典,其中的指针dicht ht[2] 指向了两个哈希表
typedef struct dictht {
dictEntry *
table;
unsigned long size;
unsigned long sizemask;
unsigned long used;
} dictht;
dicht[0] 是用于真正存放数据,dicht[1]一般在哈希表元素过多进行rehash的时候用于中转数据。
dictht中的table用语真正存放元素了,每个key/value对用一个dictEntry表示,放在dictEntry数组中。

img

集合对象
集合对象的编码可以是intset或者hashtable。

intset是一个整数集合,里面存的为某种同一类型的整数,支持如下三种长度的整数:

#define INTSET_ENC_INT16 (sizeof(int16_t))

#define INTSET_ENC_INT32 (sizeof(int32_t))

#define INTSET_ENC_INT64 (sizeof(int64_t))
intset是一个有序集合,查找元素的复杂度为O(logN),但插入时不一定为O(logN),因为有可能涉及到升级操作。比如当集合里全是int16_t型的整数,这时要插入一个int32_t,那么为了维持集合中数据类型的一致,那么所有的数据都会被转换成int32_t类型,涉及到内存的重新分配,这时插入的复杂度就为O(N)了。是intset不支持降级操作。
有序集合对象
有序集合的编码可能两种,一种是ziplist,另一种是skiplist与dict的结合。

ziplist作为集合和作为哈希对象是一样的,member和score顺序存放。按照score从小到大顺序排列。它的结构不再复述。

skiplist是一种跳跃表,它实现了有序集合中的快速查找,在大多数情况下它的速度都可以和平衡树差不多。但它的实现比较简单,可以作为平衡树的替代品。它的结构比较特殊。下面分别是跳跃表skiplist和它内部的节点skiplistNode的结构体:

/*

  • 跳跃表

  • / typedef struct zskiplist {
    // 头节点,尾节点
    struct zskiplistNode header, *tail;
    // 节点数量
    unsigned long length;
    // 目前表内节点的最大层数
    int level;
    } zskiplist;
    /
    ZSETs use a specialized version of Skiplists / /

  • 跳跃表节点

  • / typedef struct zskiplistNode {
    // member 对象
    robj *obj;
    // 分值
    double score;
    // 后退指针
    struct zskiplistNode *backward;
    // 层
    struct zskiplistLevel {

    // 前进指针
    struct zskiplistNode *forward;
    // 这个层跨越的节点数量
    unsigned int span;

    } level[];
    } zskiplistNode;
    head和tail分别指向头节点和尾节点,然后每个skiplistNode里面的结构又是分层的(即level数组)
    用图表示,大概是下面这个样子:

    img

每一列都代表一个节点,保存了member和score,按score从小到大排序。每个节点有不同的层数,这个层数是在生成节点的时候随机生成的数值。每一层都是一个指向后面某个节点的指针。这种结构使得跳跃表可以跨越很多节点来快速访问。

前面说到了,有序集合ZSET是有跳跃表和hashtable共同形成的。

typedef struct zset {
// 字典
dict *dict;
// 跳跃表
zskiplist *zsl;
} zset;
为什么要用这种结构呢。试想如果单一用hashtable,那可以快速查找、添加和删除元素,但没法保持集合的有序性。如果单一用skiplist,有序性可以得到保障,但查找的速度太慢O(logN)。
结尾

简单介绍了Redis的五种对象类型和它们的底层实现。事实上,Redis的高效性和灵活性正是得益于对于同一个对象类型采取不同的底层结构,并在必要的时候对二者进行转换;以及各种底层结构对内存的合理利用。

一天一个Linux命令,whereis命令

whereis命令

whereis命令用来定位指令的二进制程序、源代码文件和man手册页等相关文件的路径。

whereis命令只能用于程序名的搜索,而且只搜索二进制文件(参数-b)、man说明文件(参数-m)和源代码文件(参数-s)。如果省略参数,则返回所有信息。

find相比,whereis查找的速度非常快,这是因为linux系统会将 系统内的所有文件都记录在一个数据库文件中,当使用whereis和下面即将介绍的locate时,会从数据库中查找数据,而不是像find命令那样,通 过遍历硬盘来查找,效率自然会很高。 但是该数据库文件并不是实时更新,默认情况下时一星期更新一次,因此,我们在用whereis和locate 查找文件时,有时会找到已经被删除的数据,或者刚刚建立文件,却无法查找到,原因就是因为数据库文件没有被更新。

语法

whereis(选项)(参数)

选项

1
2
3
4
5
6
7
8
-b:只查找二进制文件;
-B<目录>:只在设置的目录下查找二进制文件;
-f:不显示文件名前的路径名称;
-m:只查找说明文件;
-M<目录>:只在设置的目录下查找说明文件;
-s:只查找原始代码文件;
-S<目录>只在设置的目录下查找原始代码文件;
-u:查找不包含指定类型的文件。

参数

指令名:要查找的二进制程序、源文件和man手册页的指令名。

实例

whereis java 查找所有的包含java的文件。

1562853781500

whereis -b java 只查找二进制文件, 与上面的结果相比,非二进制的文件 .gz被过滤掉了。

1562853876707

whereis -m java 只查找说明文件,和上面的结果相比,过滤掉二进制文件。

1562853977086

一天一个Linux命令,ps命令

ps命令

ps命令用于报告当前系统的进程状态。可以搭配kill指令随时中断、删除不必要的程序。ps命令是最基本同时也是非常强大的进程查看命令,使用该命令可以确定有哪些进程正在运行和运行的状态、进程是否结束、进程有没有僵死、哪些进程占用了过多的资源等等,总之大部分信息都是可以通过执行该命令得到的。

语法

ps(选项)

选项

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
-a:显示所有终端机下执行的程序,除了阶段作业领导者之外。
a:显示现行终端机下的所有程序,包括其他用户的程序。
-A:显示所有程序。
-c:显示CLS和PRI栏位。
c:列出程序时,显示每个程序真正的指令名称,而不包含路径,选项或常驻服务的标示。
-C<指令名称>:指定执行指令的名称,并列出该指令的程序的状况。
-d:显示所有程序,但不包括阶段作业领导者的程序。
-e:此选项的效果和指定"A"选项相同。
e:列出程序时,显示每个程序所使用的环境变量。
-f:显示UID,PPIP,C与STIME栏位。
f:用ASCII字符显示树状结构,表达程序间的相互关系。
-g<群组名称>:此选项的效果和指定"-G"选项相同,当亦能使用阶段作业领导者的名称来指定。
g:显示现行终端机下的所有程序,包括群组领导者的程序。
-G<群组识别码>:列出属于该群组的程序的状况,也可使用群组名称来指定。
h:不显示标题列。
-H:显示树状结构,表示程序间的相互关系。
-j或j:采用工作控制的格式显示程序状况。
-l或l:采用详细的格式来显示程序状况。
L:列出栏位的相关信息。
-m或m:显示所有的执行绪。
n:以数字来表示USER和WCHAN栏位。
-N:显示所有的程序,除了执行ps指令终端机下的程序之外。
-p<程序识别码>:指定程序识别码,并列出该程序的状况。
p<程序识别码>:此选项的效果和指定"-p"选项相同,只在列表格式方面稍有差异。
r:只列出现行终端机正在执行中的程序。
-s<阶段作业>:指定阶段作业的程序识别码,并列出隶属该阶段作业的程序的状况。
s:采用程序信号的格式显示程序状况。
S:列出程序时,包括已中断的子程序资料。
-t<终端机编号>:指定终端机编号,并列出属于该终端机的程序的状况。
t<终端机编号>:此选项的效果和指定"-t"选项相同,只在列表格式方面稍有差异。
-T:显示现行终端机下的所有程序。
-u<用户识别码>:此选项的效果和指定"-U"选项相同。
u:以用户为主的格式来显示程序状况。
-U<用户识别码>:列出属于该用户的程序的状况,也可使用用户名称来指定。
U<用户名称>:列出属于该用户的程序的状况。
v:采用虚拟内存的格式显示程序状况。
-V或V:显示版本信息。
-w或w:采用宽阔的格式来显示程序状况。 
x:显示所有程序,不以终端机来区分。
X:采用旧式的Linux i386登陆格式显示程序状况。
-y:配合选项"-l"使用时,不显示F(flag)栏位,并以RSS栏位取代ADDR栏位 。
-<程序识别码>:此选项的效果和指定"p"选项相同。
--cols<每列字符数>:设置每列的最大字符数。
--columns<每列字符数>:此选项的效果和指定"--cols"选项相同。
--cumulative:此选项的效果和指定"S"选项相同。
--deselect:此选项的效果和指定"-N"选项相同。
--forest:此选项的效果和指定"f"选项相同。
--headers:重复显示标题列。
--help:在线帮助。
--info:显示排错信息。
--lines<显示列数>:设置显示画面的列数。
--no-headers:此选项的效果和指定"h"选项相同,只在列表格式方面稍有差异。
--group<群组名称>:此选项的效果和指定"-G"选项相同。
--Group<群组识别码>:此选项的效果和指定"-G"选项相同。
--pid<程序识别码>:此选项的效果和指定"-p"选项相同。
--rows<显示列数>:此选项的效果和指定"--lines"选项相同。
--sid<阶段作业>:此选项的效果和指定"-s"选项相同。
--tty<终端机编号>:此选项的效果和指定"-t"选项相同。
--user<用户名称>:此选项的效果和指定"-U"选项相同。
--User<用户识别码>:此选项的效果和指定"-U"选项相同。
--version:此选项的效果和指定"-V"选项相同。
--widty<每列字符数>:此选项的效果和指定"-cols"选项相同。

实例:

ps -ef | grep java 列出所有程序,显示UID,PPIP,并使用管道符 | grep 过滤 Java关键字的进程。

1562773001376

ps -ef 列出所有程序,显示UID,PPIP,不过滤

1562773215172